123 research outputs found

    E1-Like Activating Enzyme Atg7 Is Preferentially Sequestered into p62 Aggregates via Its Interaction with LC3-I

    Get PDF
    p62 is constitutively degraded by autophagy via its interaction with LC3. However, the interaction of p62 with LC3 species in the context of the LC3 lipidation process is not specified. Further, the p62-mediated protein aggregation's effect on autophagy is unclear. We systemically analyzed the interactions of p62 with all known Atg proteins involved in LC3 lipidation. We find that p62 does not interact with LC3 at the stages when it is being processed by Atg4B or when it is complexed or conjugated with Atg3. p62 does interact with LC3-I and LC3-I:Atg7 complex and is preferentially recruited by LC3-II species under autophagic stimulation. Given that Atg4B, Atg3 and LC3-Atg3 are indispensable for LC3-II conversion, our study reveals a protective mechanism for Atg4B, Atg3 and LC3-Atg3 conjugate from being inappropriately sequestered into p62 aggregates. Our findings imply that p62 could potentially impair autophagy by negatively affecting LC3 lipidation and contribute to the development of protein aggregate diseases. © 2013 Gao et al

    Introducing LoCo, a Logic for Configuration Problems

    Full text link
    In this paper we present the core of LoCo, a logic-based high-level representation language for expressing configuration problems. LoCo shall allow to model these problems in an intuitive and declarative way, the dynamic aspects of configuration notwithstanding. Our logic enforces that configurations contain only finitely many components and reasoning can be reduced to the task of model construction.Comment: In Proceedings LoCoCo 2011, arXiv:1108.609

    Intelligent configuration of social support networks around depressed persons

    Get PDF
    Helping someone who is depressed can be very important to the depressed person.A number of supportive family members or friends can often make a big difference.This paper addresses how a social support network can be formed, taking the needs of the support recipient and the possibilities of the potential support providers into account.To do so, dynamic models about the preferences and needs of both support providers and support recipients are exploited. The outcome of this is used as input for a configuration process of a support network. In a case study, it is show how such an intelligently formed network results in a reduced long term stress level

    Intermediate filament cytoskeleton of the liver in health and disease

    Get PDF
    Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising ~70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation

    The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference

    Get PDF
    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR)

    Naturally-Acquired Influenza-Specific CD4+ T-Cell Proliferative Responses Are Impaired in HIV-Infected African Adults

    Get PDF
    BACKGROUND Seasonal influenza has been associated with greater morbidity and mortality in AIDS patients. Highly-active antiretroviral therapy (HAART) has led to some reduction in influenza-related complications but the nature of naturally-acquired T-cell immunity to influenza virus in an African setting, and how this changes with immune reconstitution following HAART is unknown. We measured influenza-specific CD4(+) T-cell immunity in unimmunized HIV-infected Malawian adults and then investigated immune reconstitution following HAART. METHODS Peripheral blood mononuclear cells were isolated from HIV-infected and HIV-uninfected Malawian adults. CFSE proliferation and CD154 expression flow cytometry-based assays were used to measure influenza-specific CD4(+) T-cell immunity. RESULTS We found lower naturally-acquired proliferative influenza-specific CD4(+) T-cell responses in AIDS patients that was also present in asymptomatic HIV-infected adults with relatively high CD4 counts (>350 cells/µl). Influenza-specific CD4(+) T-cell immune reconstitution in HIV-infected patients on HAART for 12 months was poor despite a marked reduction in viral load and an increase in CD4 count. This poor immune reconstitution was characterised by a low influenza-specific proliferative CD4(+) T-cell response and reduced proportions of CD154-expressing influenza-specific CD4(+) T-cells in peripheral blood. CONCLUSION Our data suggest that asymptomatic HIV-infected adults may also be at risk of influenza-related complications and that HAART alone may not circumvent this risk in AIDS patients. This study highlights the need to identify possible interventions early in HIV infection to reduce the risk of influenza and to intensify influenza surveillance in these susceptible African populations

    Rab27a and Rab27b control different steps of the exosome secretion pathway

    Get PDF
    Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using an RNA interference (RNAi) screen, we identified five Rab GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to function in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms have different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (also known as SYTL4, synaptotagmin-like 4) and Slac2b (also known as EXPH5, exophilin 5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo

    Immunosuppression during Acute Infection with Foot-and-Mouth Disease Virus in Swine Is Mediated by IL-10

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most contagious animal viruses, causing a devastating disease in cloven-hoofed animals with enormous economic consequences. Identification of the different parameters involved in the immune response elicited against FMDV remains unclear, and it is fundamental the understanding of such parameters before effective control measures can be put in place. In the present study, we show that interleukin-10 (IL-10) production by dendritic cells (DCs) is drastically increased during acute infection with FMDV in swine. In vitro blockade of IL-10 with a neutralizing antibody against porcine IL-10 restores T cell activation by DCs. Additionally, we describe that FMDV infects DC precursors and interferes with DC maturation and antigen presentation capacity. Thus, we propose a new mechanism of virus immunity in which a non-persistent virus, FMDV, induces immunosuppression by an increment in the production of IL-10, which in turn, reduces T cell function. This reduction of T cell activity may result in a more potent induction of neutralizing antibody responses, clearing the viral infection

    Inefficient Nef-Mediated Downmodulation of CD3 and MHC-I Correlates with Loss of CD4+ T Cells in Natural SIV Infection

    Get PDF
    Recent data suggest that Nef-mediated downmodulation of TCR-CD3 may protect SIVsmm-infected sooty mangabeys (SMs) against the loss of CD4+ T cells. However, the mechanisms underlying this protective effect remain unclear. To further assess the role of Nef in nonpathogenic SIV infection, we cloned nef alleles from 11 SIVsmm-infected SMs with high (>500) and 15 animals with low (<500) CD4+ T-cells/µl in bulk into proviral HIV-1 IRES/eGFP constructs and analyzed their effects on the phenotype, activation, and apoptosis of primary T cells. We found that not only efficient Nef-mediated downmodulation of TCR-CD3 but also of MHC-I correlated with preserved CD4+ T cell counts, as well as with high numbers of Ki67+CD4+ and CD8+CD28+ T cells and reduced CD95 expression by CD4+ T cells. Moreover, effective MHC-I downregulation correlated with low proportions of effector and high percentages of naïve and memory CD8+ T cells. We found that T cells infected with viruses expressing Nef alleles from the CD4low SM group expressed significantly higher levels of the CD69, interleukin (IL)-2 and programmed death (PD)-1 receptors than those expressing Nefs from the CD4high group. SIVsmm Nef alleles that were less active in downmodulating TCR-CD3 were also less potent in suppressing the activation of virally infected T cells and subsequent cell death. However, only nef alleles from a single animal with very low CD4+ T cell counts rendered T cells hyper-responsive to activation, similar to those of HIV-1. Our data suggest that Nef may protect the natural hosts of SIV against the loss of CD4+ T cells by at least two mechanisms: (i) downmodulation of TCR-CD3 to prevent activation-induced cell death and to suppress the induction of PD-1 that may impair T cell function and survival, and (ii) downmodulation of MHC-I to reduce CTL lysis of virally infected CD4+ T cells and/or bystander CD8+ T cell activation
    corecore